Connexion

Comets
GP: 12 | W: 5 | L: 6 | OTL: 1 | P: 11
GF: 41 | GA: 37 | PP%: 15.38% | PK%: 76.60%
DG: Marc-Aurele Sigouin | Morale : 40 | Moyenne d’équipe : 62
Prochains matchs #149 vs Stars
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Centre de jeu
Comets
5-6-1, 11pts
7
FINAL
1 Monsters
1-7-4, 6pts
Team Stats
OTL1SéquenceOTL1
1-4-1Fiche domicile1-2-2
4-2-0Fiche domicile0-5-2
4-5-1Derniers 10 matchs1-7-2
3.42Buts par match 1.83
3.08Buts contre par match 3.75
15.38%Pourcentage en avantage numérique10.42%
76.60%Pourcentage en désavantage numérique71.43%
Wranglers
4-5-3, 11pts
5
FINAL
4 Comets
5-6-1, 11pts
Team Stats
OTW1SéquenceOTL1
1-3-1Fiche domicile1-4-1
3-2-2Fiche domicile4-2-0
2-5-3Derniers 10 matchs4-5-1
2.83Buts par match 3.42
3.42Buts contre par match 3.08
12.50%Pourcentage en avantage numérique15.38%
76.47%Pourcentage en désavantage numérique76.60%
Stars
6-5-1, 13pts
2025-01-14
Comets
5-6-1, 11pts
Statistiques d’équipe
W2SéquenceOTL1
2-3-1Fiche domicile1-4-1
4-2-0Fiche visiteur4-2-0
5-4-110 derniers matchs4-5-1
3.08Buts par match 3.42
3.00Buts contre par match 3.42
19.15%Pourcentage en avantage numérique15.38%
83.72%Pourcentage en désavantage numérique76.60%
Comets
5-6-1, 11pts
2025-01-16
Wolves
6-5-1, 13pts
Statistiques d’équipe
OTL1SéquenceW4
1-4-1Fiche domicile4-2-0
4-2-0Fiche visiteur2-3-1
4-5-110 derniers matchs5-4-1
3.42Buts par match 3.08
3.08Buts contre par match 3.08
15.38%Pourcentage en avantage numérique29.79%
76.60%Pourcentage en désavantage numérique77.59%
Bruins
7-4-1, 15pts
2025-01-18
Comets
5-6-1, 11pts
Statistiques d’équipe
W2SéquenceOTL1
3-2-1Fiche domicile1-4-1
4-2-0Fiche visiteur4-2-0
7-2-110 derniers matchs4-5-1
2.67Buts par match 3.42
2.50Buts contre par match 3.42
24.56%Pourcentage en avantage numérique15.38%
73.47%Pourcentage en désavantage numérique76.60%
Meneurs d'équipe
Buts
Radim Zohorna
10
Passes
Will Lockwood
9
Points
Radim Zohorna
14
Plus/Moins
Radim Zohorna
8
Kasimir KaskisuoVictoires
Kasimir Kaskisuo
4
Kasimir KaskisuoPourcentage d’arrêts
Kasimir Kaskisuo
0.898

Statistiques d’équipe
Buts pour
41
3.42 GFG
Tirs pour
369
30.75 Avg
Pourcentage en avantage numérique
15.4%
8 GF
Début de zone offensive
43.7%
Buts contre
37
3.08 GAA
Tirs contre
354
29.50 Avg
Pourcentage en désavantage numérique
76.6%%
11 GA
Début de la zone défensive
36.2%
Informations de l'équipe

Directeur généralMarc-Aurele Sigouin
EntraîneurBenoit Groulx
DivisionPacific Division
ConférenceConférence Ouest
Capitaine
Assistant #1
Assistant #2


Informations de l’aréna

Capacité3,000
Assistance0
Billets de saison0


Informations de la formation

Équipe Pro26
Équipe Mineure20
Limite contact 46 / 70
Espoirs7


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur #C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire
1Jason Zucker0XX100.007773617575849182507674667788780407403315,300,000$
2Tyler Johnson0XX100.007040817771859079697476677787770407403515,000,000$
3Nils Aman0X98.00674088757681736870646370695850040680252925,000$
4Radim Zohorna0XX100.00724578698879736945636465676555040670291775,000$
5Will Lockwood0X100.00794579757576736645616066676555040660271775,000$
6Jayson Megna0X100.00584173716071716664656067667063040650351775,000$
7Rocco Grimaldi0XXX100.00504368725074736950656850706558040640321775,000$
8Mason Jobst0XX100.00534465655872706563646252646555040620311775,000$
9Jacob Lucchini0X100.00834093557063585252675773545458040620292750,000$
10Sheldon Rempal0XX100.00524272675770686645616450665850040610301762,000$
11Clark Bishop0XX100.00574960646370686159575555605850040590291775,000$
12Tony DeAngelo0X98.005545737473827870406865647080700407003015,000,000$
13Alex Petrovic0X100.00604467636973736440615566616558040640331775,000$
14Jack Ahcan0X100.00564565725871696640655769655550040640281775,000$
15Cavan Fitzgerald0X100.00574270696469676540606365665550040630291775,000$
16Kevin Connauton0X100.00605059656271716340605468617063040630351762,500$
17Olivier Galipeau0X100.00654663656469676340605469615550040630281775,000$
Rayé
1Christian Dvorak0XX95.006140827478867869896465696980700406902914,450,000$
2Greg McKegg0XXX100.00544762606272716160625352586555040590331762,500$
3Turner Elson0XX100.00544369656072716043595455606558040590331762,500$
4Lucas Edmonds (R)0XX100.00584073705864625841535459615150040580243950,000$
5Ryan Fitzgerald0XX100.00534072645867655540515151576050040560311775,000$
6Wayne Simmonds0X100.0011111111111111104060361900,000$
7Brady Lyle0X100.00664366657066646240545767615350040620261775,000$
MOYENNE D’ÉQUIPE99.6359436866637069634960586062625504062
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien #CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPÂgeContratSalaire
1Matthew Murray0100.0073666965696870676870575450040670272750,000$
2Kasimir Kaskisuo099.0072655965656566646565656558040640321775,000$
Rayé
MOYENNE D’ÉQUIPE99.507366646567676866676861605404066
Nom de l’entraîneur PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Benoit Groulx6060606063581CAN573250,000$


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur Nom de l’équipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Radim ZohornaComets (NJD)C/LW1210414820201845122922.22%423719.7840413420000242046.88%3200011.1800000300
2Christian DvorakComets (NJD)C/LW1238117004394811306.25%428824.040337420001500058.27%39300000.7600000012
3Will LockwoodComets (NJD)RW122911614028163912265.13%222718.930229420000170045.45%1100000.9700000010
4Tony DeAngeloComets (NJD)D12459410016202661115.38%2230725.591121440000033100%000000.5900000100
5Jack AhcanComets (NJD)D12369210028201621418.75%2128623.86224539000032000%000000.6300000011
6Rocco GrimaldiComets (NJD)C/LW/RW12448240121325152216.00%020517.09022339000001142.86%1400000.7800000001
7Nils AmanComets (NJD)C1226826024393615275.56%625020.910225390000400058.37%23300000.6400000011
8Jayson MegnaComets (NJD)C12347-20017332351013.04%215412.8400002000001056.77%15500000.9100000000
9Mason JobstComets (NJD)C/LW12246-2401212751228.57%115813.24000000000100050.00%1000000.7600000010
10Sheldon RempalComets (NJD)LW/RW12235-18011101821311.11%119816.52011234000000053.33%1500000.5000000000
11Olivier GalipeauComets (NJD)D1205561202511123130%422218.54011433000126000%000000.4500000010
12Kevin ConnautonComets (NJD)D120444100111573100%1223119.31000320000019000%000000.3500000000
13Alex PetrovicComets (NJD)D10224220157142314.29%917717.76101822000021000%000000.4500000100
14Tyler JohnsonComets (NJD)C/RW41233201113387.69%05313.2800000000000033.33%300001.1300000000
15Jason ZuckerComets (NJD)LW/RW411210015122100.00%0174.36000000000100100.00%100002.2900000000
16Sam GagnerDevilsC/RW20221003572110%04321.9901126000070037.50%800000.9100000000
17Lucas EdmondsComets (NJD)LW/RW6202-1000171228.57%0457.5600000000000050.00%200000.8800000000
18Clark BishopComets (NJD)C/LW10011-100443130%1545.4700010000060050.00%200000.3700000000
19Greg McKeggComets (NJD)C/LW/RW6011-300702150%07111.890000100001000%100000.2800000000
20Brady LyleComets (NJD)D8011060862240%912415.6000003000013000%000000.1600000000
21Jacob LucchiniComets (NJD)C12011040598530%0756.2600002000010049.35%7700000.2700000000
22Cavan FitzgeraldComets (NJD)D4000000311020%3379.390000300006000%00000000000000
23Turner ElsonComets (NJD)C/LW2000000000000%000.370000000000000%00000000000000
24Yakov TreninDevilsC/LW2000020303110%094.690000000000000%00000000000000
25Marcus BjorkDevilsD2000-300656310%24824.480003400006000%00000000000000
Statistiques d’équipe totales ou en moyenne21641731143596026429036911426211.11%103352716.33815237942200023215156.11%95700010.6500000565
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien Nom de l’équipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Kasimir KaskisuoComets (NJD)114510.8982.88626403029300000102000
2Matthew MurrayComets (NJD)21100.8854.42950076100000210000
Statistiques d’équipe totales ou en moyenne135610.8953.08722403735400001212000


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du joueur Nom de l’équipePOS Âge Date de naissance Pays Recrue Poids Taille Non-échange Disponible pour échange Acquis Par Date de la Dernière Transaction Ballotage forcé Waiver Possible Contrat Date du Signature du Contrat Forcer UFA Rappel d'urgence Type Salaire actuel Plafond salarial Plafond salarial restant Exclus du plafond salarial Salaire année 2Salaire année 3Salaire année 4Salaire année 5Salaire année 6Salaire année 7Salaire année 8Salaire année 9Salaire année 10Plafond salarial année 2Plafond salarial année 3Plafond salarial année 4Plafond salarial année 5Plafond salarial année 6Plafond salarial année 7Plafond salarial année 8Plafond salarial année 9Plafond salarial année 10Non-échange année 2Non-échange année 3Non-échange année 4Non-échange année 5Non-échange année 6Non-échange année 7Non-échange année 8Non-échange année 9Non-échange année 10Lien
Alex PetrovicComets (NJD)D331991-03-03CANNo216 Lbs6 ft4NoNoAssign ManuallyNoNo12024-12-05FalseFalsePro & Farm775,000$0$0$No---------------------------
Brady LyleComets (NJD)D261998-06-06CANNo215 Lbs6 ft3NoNoAssign ManuallyNoNo12024-12-05FalseFalsePro & Farm775,000$0$0$No---------------------------
Cavan FitzgeraldComets (NJD)D291995-08-23USANo200 Lbs6 ft1NoNoAssign ManuallyNoNo12024-12-05FalseFalsePro & Farm775,000$0$0$No---------------------------Lien NHL
Christian DvorakComets (NJD)C/LW291995-02-02USANo192 Lbs6 ft1NoNoAssign ManuallyYesYes12024-12-05FalseFalsePro & Farm4,450,000$0$0$No---------------------------Lien NHL
Clark BishopComets (NJD)C/LW291995-03-29USANo195 Lbs6 ft0NoNoAssign ManuallyNoNo12024-12-06FalseFalsePro & Farm775,000$0$0$No---------------------------Lien NHL
Greg McKeggComets (NJD)C/LW/RW331991-06-17CANNo200 Lbs6 ft0NoNoAssign ManuallyYesYes12024-12-06FalseFalsePro & Farm762,500$0$0$No---------------------------Lien NHL
Jack AhcanComets (NJD)D281996-05-18USANo181 Lbs5 ft9NoNoAssign ManuallyNoNo12024-12-05FalseFalsePro & Farm775,000$0$0$No---------------------------
Jacob LucchiniComets (NJD)C291995-05-09CANNo180 Lbs6 ft0NoNoN/ANoNo2FalseFalsePro & Farm750,000$0$0$No750,000$--------750,000$--------No--------Lien
Jason ZuckerComets (NJD)LW/RW331991-01-16USANo192 Lbs5 ft11NoNoAssign ManuallyYesYes12024-12-05FalseFalsePro & Farm5,300,000$0$0$No---------------------------Lien NHL
Jayson MegnaComets (NJD)C351989-02-01USANo190 Lbs6 ft0NoNoAssign ManuallyYesYes12024-12-05FalseFalsePro & Farm775,000$0$0$No---------------------------Lien NHL
Kasimir KaskisuoComets (NJD)G321992-10-02FINNo203 Lbs6 ft3NoNoAssign ManuallyNoNo12024-12-05FalseFalsePro & Farm775,000$0$0$No---------------------------Lien NHL
Kevin ConnautonComets (NJD)D351989-02-23CANNo200 Lbs6 ft2NoNoN/AYesYes1FalseFalsePro & Farm762,500$0$0$No---------------------------Lien NHL
Lucas EdmondsComets (NJD)LW/RW242000-01-27CANYes174 Lbs5 ft10NoNoProspectNoNo32024-08-24FalseFalsePro & Farm950,000$0$0$No950,000$950,000$-------950,000$950,000$-------NoNo-------
Mason JobstComets (NJD)C/LW311993-02-17USANo185 Lbs5 ft8NoNoAssign ManuallyYesYes12024-12-06FalseFalsePro & Farm775,000$0$0$No---------------------------Lien NHL
Matthew MurrayComets (NJD)G271997-02-02CANNo194 Lbs6 ft1NoNoN/ANoNo2FalseFalsePro & Farm750,000$0$0$No750,000$--------750,000$--------No--------
Nils AmanComets (NJD)C251999-02-07SWENo179 Lbs6 ft2NoNoN/ANoNo2FalseFalsePro & Farm925,000$0$0$No925,000$--------925,000$--------No--------
Olivier GalipeauComets (NJD)D281996-05-22CANNo203 Lbs6 ft0NoNoAssign ManuallyNoNo12024-12-05FalseFalsePro & Farm775,000$0$0$No---------------------------
Radim ZohornaComets (NJD)C/LW291995-04-29CZENo220 Lbs6 ft6NoNoAssign ManuallyNoNo12024-12-05FalseFalsePro & Farm775,000$0$0$No---------------------------
Rocco GrimaldiComets (NJD)C/LW/RW321992-02-08USANo160 Lbs5 ft6NoNoAssign ManuallyYesYes12024-12-05FalseFalsePro & Farm775,000$0$0$No---------------------------Lien NHL
Ryan FitzgeraldComets (NJD)C/LW311993-10-19USANo180 Lbs5 ft9NoNoAssign ManuallyYesYes12024-12-05FalseFalsePro & Farm775,000$0$0$No---------------------------Lien NHL
Sheldon RempalComets (NJD)LW/RW301994-08-07CANNo173 Lbs5 ft11NoNoAssign ManuallyYesYes12024-12-06FalseFalsePro & Farm762,000$0$0$No---------------------------Lien NHL
Tony DeAngeloComets (NJD)D301994-10-24USANo180 Lbs5 ft11NoNoAssign ManuallyYesYes12024-12-05FalseFalsePro & Farm5,000,000$0$0$No---------------------------Lien NHL
Turner ElsonComets (NJD)C/LW331991-09-13CANNo185 Lbs5 ft11NoNoAssign ManuallyYesYes12024-12-06FalseFalsePro & Farm762,500$0$0$No---------775,000$775,000$----------------Lien NHL
Tyler JohnsonComets (NJD)C/RW351989-07-29USANo185 Lbs5 ft8NoNoAssign ManuallyYesYes12024-12-05FalseFalsePro & Farm5,000,000$0$0$No---------------------------Lien NHL
Wayne SimmondsComets (NJD)RW361988-08-26CANNo184 Lbs6 ft2NoNoAssign ManuallyYesYes12024-11-11FalseFalsePro & Farm900,000$0$0$No---------------------------Lien / Lien NHL
Will LockwoodComets (NJD)RW271997-06-20USANo178 Lbs6 ft0NoNoAssign ManuallyNoNo12024-12-05FalseFalsePro & Farm775,000$0$0$No---------------------------
Nombre de joueursÂge moyenPoids moyenTaille moyenneContrat moyenSalaire moyen 1e année
2630.35190 Lbs6 ft01.191,428,827$



Attaque à 5 contre 5
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Radim ZohornaWill Lockwood40122
2Rocco GrimaldiNils AmanSheldon Rempal30122
3Mason JobstJayson MegnaTyler Johnson20122
4Jason ZuckerJacob Lucchini10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% tempsPHYDFOF
1Tony DeAngeloJack Ahcan40122
2Kevin ConnautonOlivier Galipeau30122
3Kevin ConnautonTony DeAngelo20122
4Tony DeAngeloJack Ahcan10122
Attaque en avantage numérique
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Radim ZohornaWill Lockwood60122
2Rocco GrimaldiNils AmanSheldon Rempal40122
Défense en avantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Tony DeAngeloJack Ahcan60122
2Kevin ConnautonOlivier Galipeau40122
Attaque à 4 en désavantage numérique
Ligne #CentreAilier% tempsPHYDFOF
1Nils Aman60122
2Radim ZohornaWill Lockwood40122
Défense à 4 en désavantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Tony DeAngeloJack Ahcan60122
2Kevin ConnautonOlivier Galipeau40122
3 joueurs en désavantage numérique
Ligne #Ailier% tempsPHYDFOFDéfenseDéfense% tempsPHYDFOF
160122Tony DeAngeloJack Ahcan60122
2Nils Aman40122Kevin ConnautonOlivier Galipeau40122
Attaque à 4 contre 4
Ligne #CentreAilier% tempsPHYDFOF
1Nils Aman60122
2Radim ZohornaWill Lockwood40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% tempsPHYDFOF
1Tony DeAngeloJack Ahcan60122
2Kevin ConnautonOlivier Galipeau40122
Attaque dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Radim ZohornaWill LockwoodTony DeAngeloJack Ahcan
Défense dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Radim ZohornaWill LockwoodTony DeAngeloJack Ahcan
Attaquants supplémentaires
Normal Avantage numériqueDésavantage numérique
Jayson Megna, Jacob Lucchini, Mason JobstJayson Megna, Jacob LucchiniMason Jobst
Défenseurs supplémentaires
Normal Avantage numériqueDésavantage numérique
Kevin Connauton, Tony DeAngelo, Jack AhcanKevin ConnautonJack Ahcan, Tony DeAngelo
Tirs de pénalité
, Nils Aman, Radim Zohorna, Will Lockwood, Jayson Megna
Gardien
#1 : Kasimir Kaskisuo, #2 : Matthew Murray
Lignes d’attaque personnalisées en prolongation
, Nils Aman, Radim Zohorna, Will Lockwood, Jayson Megna, Rocco Grimaldi, Rocco Grimaldi, Jacob Lucchini, Mason Jobst, Sheldon Rempal, Tyler Johnson
Lignes de défense personnalisées en prolongation
Tony DeAngelo, Jack Ahcan, Alex Petrovic, Olivier Galipeau, Kevin Connauton


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
TotalDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals11000000633000000000001100000063321.00061218001711121321071211383238818400.00%4250.00%023541656.49%19834457.56%10419154.45%2801922928815274
2Condors1010000014-3000000000001010000014-300.0001120017111211610712113833810821500.00%4175.00%023541656.49%19834457.56%10419154.45%2801922928815274
3Eagles211000009901010000025-31100000074320.500916250017111218510712113836117185112216.67%9455.56%023541656.49%19834457.56%10419154.45%2801922928815274
4Firebirds10001000431000000000001000100043121.0004812001711121351071211383481510253133.33%4175.00%023541656.49%19834457.56%10419154.45%2801922928815274
5Manitoba Moose1010000012-11010000012-10000000000000.0001230017111212210712113832771226600.00%60100.00%023541656.49%19834457.56%10419154.45%2801922928815274
6Monsters11000000716000000000001100000071621.0007111800171112133107121138329410236233.33%40100.00%023541656.49%19834457.56%10419154.45%2801922928815274
7Reign11000000523110000005230000000000021.00059140017111213210712113832126194125.00%3166.67%023541656.49%19834457.56%10419154.45%2801922928815274
8Senators1010000013-21010000013-20000000000000.000123001711121241071211383268228300.00%10100.00%023541656.49%19834457.56%10419154.45%2801922928815274
9Silver Knights1010000023-11010000023-10000000000000.0002350017111212410712113832814819100.00%3166.67%023541656.49%19834457.56%10419154.45%2801922928815274
10Wolf Pack1010000012-1000000000001010000012-100.0001230017111212910712113832496164125.00%3166.67%023541656.49%19834457.56%10419154.45%2801922928815274
11Wranglers1000010045-11000010045-10000000000010.500471100171112137107121138329912184125.00%60100.00%023541656.49%19834457.56%10419154.45%2801922928815274
Total12460110041374614001001520-56320100026179110.4584173114001711121369107121138335410310026452815.38%471176.60%023541656.49%19834457.56%10419154.45%2801922928815274
_Since Last GM Reset12460110041374614001001520-56320100026179110.4584173114001711121369107121138335410310026452815.38%471176.60%023541656.49%19834457.56%10419154.45%2801922928815274
_Vs Conference9340110033294412001001315-2522010002014690.5003357900017111212911071211383278807819239820.51%36975.00%023541656.49%19834457.56%10419154.45%2801922928815274
_Vs Division6310110029209311001001112-1320010001881090.7502951800017111212221071211383188475613629724.14%26676.92%023541656.49%19834457.56%10419154.45%2801922928815274

Total pour les joueurs
Matchs jouésPointsSéquenceButsPassesPointsTirs pourTirs contreTirs bloquésMinutes de pénalitésMises en échecButs en filet désertBlanchissages
1211OTL1417311436935410310026400
Tous les matchs
GPWLOTWOTL SOWSOLGFGA
124611004137
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
61401001520
Matchs extérieurs
GPWLOTWOTL SOWSOLGFGA
63210002617
Derniers 10 matchs
WLOTWOTL SOWSOL
450100
Tentatives en avantage numériqueButs en avantage numérique% en avantage numériqueTentatives en désavantage numériqueButs contre en désavantage numérique% en désavantage numériqueButs pour en désavantage numérique
52815.38%471176.60%0
Tirs en 1e périodeTirs en 2e périodeTirs en 3e périodeTirs en 4e périodeButs en 1e périodeButs en 2e périodeButs en 3e périodeButs en 4e période
10712113831711121
Mises en jeu
Gagnées en zone offensiveTotal en zone offensive% gagnées en zone offensive Gagnées en zone défensiveTotal en zone défensive% gagnées en zone défensiveGagnées en zone neutreTotal en zone neutre% gagnées en zone neutre
23541656.49%19834457.56%10419154.45%
Temps avec la rondelle
En zone offensiveContrôle en zone offensiveEn zone défensiveContrôle en zone défensiveEn zone neutreContrôle en zone neutre
2801922928815274


Derniers matchs joués
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe visiteuse Score Équipe locale Score ST OT SO RI Lien
3 - 2024-12-229Eagles5Comets2LSommaire du match
4 - 2024-12-2312Comets4Firebirds3WXSommaire du match
7 - 2024-12-2632Reign2Comets5WSommaire du match
8 - 2024-12-2744Comets1Wolf Pack2LSommaire du match
10 - 2024-12-2956Senators3Comets1LSommaire du match
12 - 2024-12-3164Comets6Admirals3WSommaire du match
14 - 2025-01-0281Manitoba Moose2Comets1LSommaire du match
16 - 2025-01-0489Comets1Condors4LSommaire du match
18 - 2025-01-06100Silver Knights3Comets2LSommaire du match
20 - 2025-01-08115Comets7Eagles4WSommaire du match
22 - 2025-01-10122Comets7Monsters1WSommaire du match
24 - 2025-01-12136Wranglers5Comets4LXSommaire du match
26 - 2025-01-14149Stars-Comets-
28 - 2025-01-16164Comets-Wolves-
30 - 2025-01-18176Bruins-Comets-
33 - 2025-01-21188Comets-IceHogs-
34 - 2025-01-22202Firebirds-Comets-
36 - 2025-01-24213Comets-Condors-
38 - 2025-01-26226Comets-Stars-
40 - 2025-01-28235Marlies-Comets-
42 - 2025-01-30247Comets-Firebirds-
44 - 2025-02-01258Silver Knights-Comets-
46 - 2025-02-03273Comets-Penguins-
48 - 2025-02-05283Firebirds-Comets-
50 - 2025-02-07294Comets-Bruins-
51 - 2025-02-08307Wolves-Comets-
53 - 2025-02-10320Eagles-Comets-
55 - 2025-02-12329Comets-Firebirds-
57 - 2025-02-14345Comets-Gulls-
58 - 2025-02-15352Comets-Marlies-
60 - 2025-02-17365IceHogs-Comets-
62 - 2025-02-19379Bruins-Comets-
64 - 2025-02-21388Comets-Wranglers-
66 - 2025-02-23402Condors-Comets-
68 - 2025-02-25416Comets-Admirals-
69 - 2025-02-26426Eagles-Comets-
71 - 2025-02-28438Stars-Comets-
73 - 2025-03-02451Comets-Wolf Pack-
75 - 2025-03-04461Comets-Checkers-
77 - 2025-03-06474Admirals-Comets-
78 - 2025-03-07487Comets-Eagles-
80 - 2025-03-09499Monsters-Comets-
82 - 2025-03-11511Comets-Gulls-
84 - 2025-03-13523Rocket-Comets-
85 - 2025-03-14536Senators-Comets-
87 - 2025-03-16550Comets-Rocket-
88 - 2025-03-17561Wolf Pack-Comets-
90 - 2025-03-19574Comets-Americans-
92 - 2025-03-21585Comets-Reign-
93 - 2025-03-22593Checkers-Comets-
95 - 2025-03-24607Americans-Comets-
97 - 2025-03-26618Comets-Senators-
98 - 2025-03-27631Rocket-Comets-
101 - 2025-03-30653Checkers-Comets-
103 - 2025-04-01664Comets-Monsters-
104 - 2025-04-02676Monsters-Comets-
106 - 2025-04-04687Comets-Silver Knights-
108 - 2025-04-06699Comets-Firebirds-
109 - 2025-04-07705Americans-Comets-
111 - 2025-04-09723Manitoba Moose-Comets-
112 - 2025-04-10728Comets-Marlies-
113 - 2025-04-11745Comets-Reign-
115 - 2025-04-13750Comets-Wranglers-
116 - 2025-04-14762Crunch-Comets-
118 - 2025-04-16777Gulls-Comets-
119 - 2025-04-17786Comets-Checkers-
121 - 2025-04-19801Reign-Comets-
123 - 2025-04-21819Griffins-Comets-
124 - 2025-04-22821Comets-IceHogs-
126 - 2025-04-24839Comets-Crunch-
127 - 2025-04-25847Griffins-Comets-
131 - 2025-04-29869Reign-Comets-
132 - 2025-04-30876Comets-Wolves-
133 - 2025-05-01890Wranglers-Comets-
135 - 2025-05-03905Penguins-Comets-
136 - 2025-05-04909Comets-Monsters-
138 - 2025-05-06924Comets-Manitoba Moose-
139 - 2025-05-07932Comets-Crunch-
140 - 2025-05-08935Comets-Griffins-
142 - 2025-05-10949Comets-Manitoba Moose-
143 - 2025-05-11960Wranglers-Comets-
146 - 2025-05-14974Penguins-Comets-



Capacité de l’aréna - Tendance du prix des billets - %
Niveau 1Niveau 2
Capacité20001000
Prix des billets3515
Assistance00
Assistance PCT0.00%0.00%

Revenu
Matchs à domicile restantsAssistance moyenne - %Revenu moyen par matchRevenu annuel à ce jourCapacitéPopularité de l’équipe
35 0 - 0.00% 0$0$3000100

Dépenses
Dépenses annuelles à ce jourSalaire total des joueursPlafond Salariale total des joueursSalaire des entraineurs
0$ 37,149,500$ 37,149,500$ 250,000$0$
Plafond salarial par jourPlafond salarial à ce jourJoueurs Inclus dans le plafond salarialJoueurs exclut du plafond Salarial
0$ 0$ 0 0

Estimation
Revenus de la saison estimésJours restants de la saisonDépenses par jourDépenses de la saison estimées
0$ 123 252,699$ 31,081,977$




Comets Leaders statistiques des joueurs (saison régulière)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Comets Leaders des statistiques des gardiens (saison régulière)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Comets Statistiques de l'Équipe de Carrière

TotalDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Comets Leaders statistiques des joueurs (séries éliminatoires)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Comets Leaders des statistiques des gardiens (séries éliminatoires)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA